If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2a^2=160
We move all terms to the left:
2a^2-(160)=0
a = 2; b = 0; c = -160;
Δ = b2-4ac
Δ = 02-4·2·(-160)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*2}=\frac{0-16\sqrt{5}}{4} =-\frac{16\sqrt{5}}{4} =-4\sqrt{5} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*2}=\frac{0+16\sqrt{5}}{4} =\frac{16\sqrt{5}}{4} =4\sqrt{5} $
| 4w-18= | | 6−4x=26 | | 15x-0.56=18 | | 2x^2+24x+82=0 | | 2x^2=24x+82 | | 1/4y-6=-18 | | y/2+2=-17 | | 3x=33,x= | | 2(2b)=4b | | 2x+x+40=90 | | 5r=4r-17 | | 6g-5-10g=-19-6g | | -18t+16=-20-15t | | 4d+6=5d | | 9x+4=3x-4 | | 10+2f=-2f-6 | | 8x-5=4x*6 | | -2g=8-6g | | -10-5b-7b=10b+6 | | 8n=9+5n | | 8w=38+4 | | 3r-2=-2-3r | | 20.5+w=16.25+9.5 | | (1-x)+2x=1.4 | | -9t-6+4t=10t+9 | | -9t+1=-10t | | 6-5k=2-6k | | -8v-9=-9v | | -2f=f+6 | | -6u=8-4u | | 5b=4b-3 | | -1-5x^2=-321 |